首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   0篇
  国内免费   10篇
综合类   14篇
基础理论   75篇
污染及防治   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2012年   2篇
  2010年   1篇
  2009年   3篇
  2008年   9篇
  2007年   9篇
  2006年   8篇
  2005年   4篇
  2004年   6篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   11篇
  1993年   2篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
51.
 A fundamental requirement of task regulation in social groups is that it must allow colony flexibility. We tested assumptions of three task regulation models for how honeybee colonies respond to graded changes in need for a specific task, pollen foraging. We gradually changed colony pollen stores and measured behavioral and genotypic changes in the foraging population. Colonies did not respond in a graded manner, but in six of seven cases showed a stepwise change in foraging activity as pollen storage levels moved beyond a set point. Changes in colony performance resulted from changes in recruitment of new foragers to pollen collection, rather than from changes in individual foraging effort. Where we were able to track genotypic variation, increases in pollen foraging were accompanied by a corresponding increase in the genotypic diversity of pollen foragers. Our data support previous findings that genotypic variation plays an important role in task regulation. However, the stepwise change in colony behavior suggests that colony foraging flexibility is best explained by an integrated model incorporating genotypic variation in task choice, but in which colony response is amplified by social interactions. Received: 17 October 1998 / Received in revised form: 11 March 1999 / Accepted: 12 March 1999  相似文献   
52.
Abstract: Although pollinator declines are a global biodiversity threat, the demography of the western honeybee (Apis mellifera) has not been considered by conservationists because it is biased by the activity of beekeepers. To fill this gap in pollinator decline censuses and to provide a broad picture of the current status of honeybees across their natural range, we used microsatellite genetic markers to estimate colony densities and genetic diversity at different locations in Europe, Africa, and central Asia that had different patterns of land use. Genetic diversity and colony densities were highest in South Africa and lowest in Northern Europe and were correlated with mean annual temperature. Confounding factors not related to climate, however, are also likely to influence genetic diversity and colony densities in honeybee populations. Land use showed a significantly negative influence over genetic diversity and the density of honeybee colonies over all sampling locations. In Europe honeybees sampled in nature reserves had genetic diversity and colony densities similar to those sampled in agricultural landscapes, which suggests that the former are not wild but may have come from managed hives. Other results also support this idea: putative wild bees were rare in our European samples, and the mean estimated density of honeybee colonies on the continent closely resembled the reported mean number of managed hives. Current densities of European honeybee populations are in the same range as those found in the adverse climatic conditions of the Kalahari and Saharan deserts, which suggests that beekeeping activities do not compensate for the loss of wild colonies. Our findings highlight the importance of reconsidering the conservation status of honeybees in Europe and of regarding beekeeping not only as a profitable business for producing honey, but also as an essential component of biodiversity conservation.  相似文献   
53.
The "tuned-error" hypothesis states that natural selection has tuned the divergence angle in the dances of the honey bee to produce an optimal scatter of recruits across a resource. Weidenmüller and Seeley (Behav Ecol Sociobiol 46:190–199, 1999) supported this hypothesis by finding smaller divergence angles in dances indicating potential home sites, which are always point sources, than in dances indicating food sources, which often occur in patches. This study tested for the same effect, but controlled for variables, e.g., substrate and context, that may have confounded those results. When performed on the same substrate, divergence angle does not differ between dances for the two resources. Furthermore, dances performed for food within an observation hive exhibit significantly greater divergence angle when performed on comb (as Weidenmüller and Seeley measured food dances) than on hardware cloth (as they measured home-site dances on a swarm). These findings suggest that the angular variance in direction indication in dances is more likely an artifact of physical constraints, rather than an adaptive modification of a behavior that a bee could perform more precisely.  相似文献   
54.
Summary. We describe the use of pieces of silicone tubing to analyse the mandibular gland components of queen and worker honeybees and show that these compounds can be efficiently trapped on bis(trimethylsilyl)trifluoroacetamide (BSTFA) treated pieces of tubing. The use of this technique rather than that of solid phase microextraction (SPME) techniques with commercially available fibres that have been shown to be efficient at sampling secretions from the cuticle of insects, is necessitated by a requirement for collection of large sample numbers in a short space of time or for sampling in the field. The technique may be generalised for use with semiochemicals of low volatility in other insect communciation systems.  相似文献   
55.
In an attempt to better understand the mechanism underlying lateral collision avoidance in flying insects, we trained honeybees (Apis mellifera) to fly through a large (95-cm wide) flight tunnel. We found that, depending on the entrance and feeder positions, honeybees would either center along the corridor midline or fly along one wall. Bees kept following one wall even when a major (150-cm long) part of the opposite wall was removed. These findings cannot be accounted for by the “optic flow balance” hypothesis that has been put forward to explain the typical bees’ “centering response” observed in narrower corridors. Both centering and wall-following behaviors are well accounted for, however, by a control scheme called the lateral optic flow regulator, i.e., a feedback system that strives to maintain the unilateral optic flow constant. The power of this control scheme is that it would allow the bee to guide itself visually in a corridor without having to measure its speed or distance from the walls.  相似文献   
56.
Two-way selection for quantities of stored pollen resulted in the production of high and low pollen hoarding strains of honey bees (Apis mellifera L.). Strains differed in areas of stored pollen after a single generation of selection and, by the third generation, the high strain colonies stored an average 6 times more pollen than low strain colonies. Colony-level organizational components that potentially affect pollen stores were identified that varied genetically within and between these strains. Changes occurred in several of these components, in addition to changes in the selected trait. High strain colonies had a significantly higher proportion of foragers returning with loads of pollen, however, high and low strain colonies had equal total numbers of foragers Colony rates of intake of pollen and nectar were not independent. Selection resulted in an increase in the number of pollen collectors and a decrease in the number of nectar collectors in high strain colonies, while the reciprocal relationship occurred in the low strain. High and low strain colonies also demonstrated different diurnal foraging patterns as measured by the changing proportions of returning pollen foragers. High strain colonies of generation 3 contained significantly less brood than did low strain colonies, a consequence of a constraint on colony growth resulting from a fixed nest volume and large quantities of stored pollen. These components represent selectable colony-level traits on which natural selection can act and shape the social organization of honey bee coloniesCommunicated by R.F.A. Moritz  相似文献   
57.
Variability exists among worker honey bees for components of division of labor. These components are of two types, those that affect foraging behavior and those that affect life-history characteristics of workers. Variable foraging behavior components are: the probability that foraging workers collect (1) pollen only; (2) nectar only; and (3) pollen and nectar on the same trip. Life history components are: (1) the age the workers initiate foraging behavior; (2) the length of the foraging life of a worker; and (3) worker length of life. We show how these components may interact to change the social organization of honey bee colonies and the lifetime foraging productivity of individual workers. Selection acting on foraging behavior components may result in changes in the proportion of workers collecting pollen and nectar. Selection acting on life-history components may affect the size of the foraging population and the distribution of workers between within nest and foraging activities. We suggest that these components define possible sociogenic pathways through which colony-level natural selection can change social organization. These pathways may be analogous to developmental pathways in the morphogenesis of individual organisms because small changes in behavioral or life history components of individual workers may lead to major changes in the organizational structure of colonies. Correspondence to: R.E. Page, Jr.  相似文献   
58.
We conducted experiments designed to examine the distribution of foraging honey bees (Apis mellifera) in suburban environments with rich floras and to compare spatial patterns of foraging sites used by colonies located in the same environment. The patterns we observed in resource visitation suggest a reduced role of the recruitment system as part of the overall colony foraging strategy in habitats with abundant, small patches of flowers. We simultaneously sampled recruitment dances of bees inside observation hives in two colonies over 4 days in Miami, Florida (1989) and from two other colonies over five days in Riverside, California (1991). Information encoded in the dance was used to determine the distance and direction that bees flew from the hive for pollen and nectar and to construct foraging maps for each colony. The foraging maps showed that bees from the two colonies in each location usually foraged at different sites, but occasionally they visited the same patches of flowers. Each colony shifted foraging effort among sites on different days. In both locations, the mean flight distances differed between colonies and among days within colonies. The flight distances observed in our study are generally shorter than those reported in a similar study conducted in a temperate deciduous forest where resources were less dense and floral patches were smaller.  相似文献   
59.
Summary The tremble dance is a behavior sometimes performed by honeybee foragers returning to the hive. The biological significance of this behavior was unclear until Seeley (1992) demonstrated that tremble dances occur mainly when a colony's nectar influx is so high that the foragers must undertake lenghty searches in order to find food storers to unload their nectar. He suggested that tremble dancing has the effect of stimulating additional bees to function as food-storers, thereby raising the colony's capacity for processing nectar. Here I describe vibrational signals emitted by the tremble dancers. Simulation experiments with artificial tremble dance sounds revealed that these sounds inhibited dancing and reduced recruitment to feeding sites. The results suggest that the tremble dance is a negative feedback system counterbalancing the positive feedback of recruitment by waggle dances. Thus, the tremble dance seems to affect not only the colony's nectar processing rate, but also its nectar intake rate.  相似文献   
60.
Since forager honeybees change their food-unloading behavior according to nectar-source profitability, an experiment was performed in order to analyze whether food-receivers modify their within-hive tasks related to different reward conditions. We offered individual foragers two reward conditions at a rate feeder while an additional feeder offered a constant reward and was of free access to the rest of the hive. Both feeders were the only food sources exploited by the colony during the assays since a flight chamber was used. After receiving nectar, hive bees performed processing cycles that involved several behaviors and concluded when they returned to the delivery area to receive a new food sample. During these cycles, receivers mainly performed oral contacts offering food, or inspected cells, and often both. In the latter case, both behaviors occurred simultaneously and at the same distance from the hive entrance. When they performed a single task, either the occurrence of cell inspections increased or contact offerings decreased for the highest reward rate offered to the donor-forager. Receivers also begged for food more often after interacting with low-profit foragers. Thus, the profitability of the food source exploited by nectar-forager honeybees could affect receiver behaviors within the hives based on individual-to-individual interactions.Communicated by R.F.A. Moritz  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号